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Abstract
We address the problem of recognition and growth of ice nuclei in simulation of supercooled
bulk water. Bond orientation order parameters based on the spherical harmonics analysis are
shown to be ineffective when applied to ice nucleation. Here we present an alternative method
which robustly differentiates between hexagonal and cubic ice forms. The method is based on
accumulation of the maximum projection of bond orientations onto a set of predetermined
vectors, where different terms can contribute with opposite signs with the result that the
irrelevant or incompatible molecular arrangements are damped out. We also introduce an
effective cluster size by assigning a quality weight to each molecule in an ice-like cluster.
We employ our cluster analysis in Monte Carlo simulation of homogeneous ice formation.
Replica-exchange umbrella sampling is used for biasing the growth of the largest cluster and
calculating the associated free energy barrier. Our results suggest that the ice formation can be
seen as a two-stage process. Initially, short tetrahedrally arranged threads and rings are present;
these become correlated and form a diffuse ice-genic network. Later, hydrogen bond
arrangements within the amorphous ice-like structure gradually settle down and simultaneously
‘tune-up’ nearby water molecules. As a result, a well-shaped ice core emerges and spreads
throughout the system. The process is very slow and diverse owing to the rough energetic
landscape and sluggish molecular motion in supercooled water, while large configurational
fluctuations are needed for crystallization to occur. In the small systems studied so far the
highly cooperative molecular rearrangements eventually lead to a relatively fast percolation of
the forming ice structure through the periodic boundaries, which inevitably affects the
simulation results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Water, while being one of the simplest and ubiquitous
compounds on Earth and providing the environment for a
vast diversity of phenomena including life itself, has long
presented challenges in understanding its peculiar properties
and complex actions. Indeed, it is remarkable how such a
simple molecule, when present in large numbers, can give
rise to so many different emergent manifestations. The

3 Author to whom any correspondence should be addressed.

chameleonic behaviour of water is also well reflected by the
fact that under different external conditions it can solidify in
over a dozen distinct ice polymorphs [1, 2], two of which—
hexagonal (Ih) and cubic (Ic)—can occur at the same time
individually and in mixed structures under ambient pressure.
The spread and importance of the two ice forms Ih and Ic

cannot be overestimated, considering that the polar ice caps,
which mostly consist of these two ices, contain about 80%
of fresh water on Earth,—a huge and invaluable reserve on
which the planet’s ecology and our survival depends. In fact,
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crystal growth in polar ice is indicative of long-term climate
changes [3, 4], whereas understanding of ice formation in
clouds may help in analysing rain- and snow-fall patterns as
well as in estimating the intensity of solar radiation passing
through the atmosphere to Earth’s surface [5, 6]. In everyday
life we mostly encounter hexagonal ice Ih (possibly mixed with
Ic), known to us in the shape of frost, snow, icicles and solid
ice surfaces. Also, it is the ambient ice that embraces tissues
and other ingredients of frozen food and, therefore, bears some
responsibility for the robustness of food preservation, which is
a mild example of the issues associated with biological tissue
preservation [7].

While water is well known for its exclusive vital role in
evolution and life support, ice, in its turn, is believed to be the
primary candidate for the role of a molecular container suitable
for conservation and transmission of life forms through outer
space,—sort of a natural, molecular level counterpart of Noah’s
ark. This is one of the reasons for the international effort in
finding water/ice patches and traces on planets and in other
space objects such as comets, meteorites and asteroids [8, 9].
Finally, there is a recent hypothesis that initial steps of RNA
evolution may take place very slowly within the permafrost on
the timescale of longlasting ice ages [10]. In this long-term
process local stresses and molecular rearrangements within the
subsoil ice, due to weather fluctuations and palaeoplatform
drifts, should be a major factor leading to a retarded diffusion
of icebound small organic compounds (methane and nitrates)
which are supposed to eventually meet and react.

That said, understanding and quantifying crystallization of
water into different ice phases under various external, as well as
unaided, conditions is, without doubt, of significant scientific
and technological importance. However, it appears that this
understanding, particularly the early stages of nucleation, is
rather difficult to investigate experimentally [11, 12], as the
required spatial and temporal resolution is not quite accessible
by experiment. In such circumstances molecular simulation
can serve as a powerful alternative means for studying the
evolution of local molecular structure and for estimating
thermodynamic quantities such as free energy barriers. Indeed,
during the last decade, ice nucleation and homogeneous
crystallization in bulk water has become accessible to
simulation [13–18]. Several studies of spontaneous ice
formation in water have been reported, where either small
ice nuclei were directly observed in simulation [14] or
rare molecular dynamics (MD) trajectories connecting liquid
water and crystal ice phases were generated [15, 16].
Also, subsurface freezing of neat and salty water has been
extensively studied in MD simulations, being supported by
high-speed visual (VIS) and infra-red (IR) imaging [17].
However, as has been stressed already by Matsumoto et al
[15] and also by Radhakrishnan and Trout [18], a satisfactory
description of the nucleation process can only come from
observations of a sufficiently large ensemble of trajectories, or
paths, leading from the metastable liquid to stable crystal phase
and vice versa. Of course, determining the corresponding free
energy barrier(s) associated with the formation of the critical
nuclei and possible intermediate cluster structures would be
invaluable in identifying the relative importance of various
pathways of crystallization [18, 19].

1.1. Issues of ergodicity

A rigorous study of the homogeneous liquid–solid transition
by computer simulation is particularly difficult for two main
reasons: (1) the nucleation process is relatively sluggish with
a very small window in terms of optimum supercooling, and
(2) numerous diverse pathways can characterize the nucleation
step [14, 15, 20–24]. Homogeneous ice nucleation is known
to be extremely hindered in comparison to its heterogeneous
analogue (ice formation on a substrate, or at an interface), the
rate of the former being estimated as about 1010 times slower
than that of the latter [5]. The hindrance can be partly ascribed
to the enormous entropy loss by water molecules when the ice
structure is formed, so that tiny entropic bottlenecks (better
to say ‘needle-eyes’) must be passed prior to the formation
of a noteworthy nucleus. Moreover, different nucleation
paths are likely to be distant and well separated from each
other in the configuration space owing to the diversity of
possible water structure patterns and the associated severe
roughness of the energetic landscape. This results in intrinsic
intermittent dynamics,—typical of so-called frustrated (glass-
like) systems [15]. Some of the paths are, of course, expected
to be easier to follow than others. Yet, energetically the most
preferable (the easiest) trajectories are considered to constitute
only a small subset of the entire path ensemble available–
the situation common with the protein folding phenomenon.
That is, in the absence of interfaces or nucleating agents,
a simulated finite system may struggle to find favourable
pathways to nucleation, so that the contribution of these
paths to the actual crystallization process may, in fact, appear
faded. This is how the path entropy and the related issues
of ergodicity due to both entropic and energetic bottlenecks
enter the simulation problem. Evidently, linked to these is
a general effect of progressively damped kinetics as the rate
of supercooling is increased, effectively leaving only a small
window for optimum supercooling. Altogether this implies
that (i) extremely long simulations are necessary for bulk
water–ice systems and (ii) extraordinary care is to be taken to
ensure that the longest relaxation times are overcome, so as to
allow for the most important regions in the configuration space
to be sampled. These two propositions are well supported
by both the earlier simulation studies [14–17] and our own
experience in simulation of the water-to-ice transition.

In the above discussion we were mostly referring to
brute-force molecular dynamics simulations of spontaneous
ice formation in water, for which the simulation times
need to be comparable with the real world nucleation
times (microseconds). There are, of course, smarter
ways of tackling the problem, for example by effectively
directing the simulation towards and over the barriers that
otherwise represent great obstacles. One of the most
efficient means of doing so is the umbrella sampling (UMS)
method [26, 27]. Although there have been reported seemingly
faster and more robust approaches which make use of self-
consistently converging penalty functions [28–32], from our
experience [33] we have learnt that these become progressively
error-prone for systems where the dynamics is considerably
damped by strong short-range correlations. Supercooled fluids
and, in particular, water at low temperatures are typical
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examples of such systems. In fact, umbrella sampling shows
its full strength only when it is carried out in sufficiently
small so-called windows and especially when it is combined
with a replica-exchange scheme. This way several studies of
nucleation and crystallization of Lennard-Jones type systems
have been performed [20–23], as well as crystallization of
distinct ice phases from supercooled water [18].

1.2. Issues of order parameters

In order to direct a water–ice phase transition in a
simulation one needs to develop an appropriate order
parameter that quantifies the degree of crystallization by
mathematically discriminating between liquid- and solid-like
local arrangements around a particle/molecule. In studies
where the simulated substance has been modelled by spherical
particles [20–23], orientation order parameters were based on
spherical harmonics analysis [34]. However, when applied
to the water–ice phase transition, this approach appears to
be inconclusive and unusable unless additional orientational
order measures, such as tetrahedral angular correlation [35],
are included [18, 19]. Indeed, recognition of crystallogenic
structures in water is more involved because, unlike with
spherical particles, the local order in ice structures cannot be
characterized in terms of plain site-to-site similarities in the
orientational patterns of neighbouring water molecules, at least
not in the way spherical harmonics are commonly used. The
tetrahedral symmetry in the positions of oxygen (O-) atoms
within the first coordination shell (FCS) of each molecule,
while being typical of ice crystals, serves as an additional hint
only, because the local H-bonding in water is also largely close
to being tetrahedral. Furthermore, for the seemingly same
tetrahedral order to propagate beyond the FCS, the tetrahedra
in each next layer should be arranged so as to share their
links with both the inner and outer neighbouring tetrahedra.
Apparently, several distinct tetrahedral lattices can emerge, as
is revealed by the variety of the known ice polymorphs [2].
In certain cases these can be further superimposed onto each
other—the vertices of one coinciding with the centres of the
other. For instance, ice VII/VIII formed from liquid water at
pressure above 3 GPa can be seen as two interpenetrating Ic

lattices. To give another example of combined ice structures,
the basal-plane sheets of normal ices, Ih and Ic, make a perfect
match and can alternate in arbitrary order and number [36, 37].
Thus, it is the secondary, long-range structure (plus H-bond
order) that actually determines a particular ice phase and,
hence, adds to the complexity that must be dealt with.

1.3. Our aim: competitive growth of ices Ih and Ic

We noted earlier the possibility that the nucleation process
may occur via a diverse series of pathways. This issue is
further compounded when two or more structural phases can
emerge in a sequence or otherwise, as it occurs in simple fluids
where a metastable body-centred crystal (bcc) nucleus forms
first and only later the stable face-centred crystal (fcc) structure
develops and spreads over the volume [20–23]. A similar
phenomenon of phase switching can be observed in binary
mixtures of hard spheres as well [38].

Even though experimental evidence [39] and earlier
simulations [18] strongly indicate that it is hexagonal ice which
is stable at temperatures above 160 K with cubic ice being
more stable below this threshold, very little is known about
the details of crystallization in bulk water. There is also some
evidence that ice Ic is favoured in the upper atmosphere [5, 6]
and in water droplets smaller than 30 nm at T = 160–
220 K [40, 41]. The latter studies as well as simulations
of crystallization of pure ice phases [18, 19] suggest that
cubic ice has a lower barrier to formation than hexagonal ice
owing to its lower interfacial free energy. This motivates our
own research aimed at modelling homogeneous ice nucleation
without restrictions on the ice phase to grow.

In this report we focus on the development of appropriate
order parameters for recognizing and directing the growth of
competing ice phases, Ih and Ic, i.e. with no bias favouring any
particular form, in supercooled water simulated under ambient
pressure, 0.1 MPa. We first revisit the use of the spherical
harmonics in orientational order characterization (section 2),
and highlight the inconsistencies in the description of the
two ice structures when using the harmonic Y32—the only
harmonic with tetrahedral geometry, and hence seemingly the
most suitable for ices. We show that applicability of the
harmonics is restricted to the cubic ice structure only, whereas
the orientational pattern characteristic of hexagonal ice cannot
be fully described. In section 3, we introduce a maximum
projection method which is general and flexible enough
for simultaneous search of arbitrary, albeit predetermined,
geometries. Based on this, we define orientational order
parameters that can robustly differentiate between low-
structured water and two distinct molecular configurations that
characterize Ih and Ic lattices. The proposed scheme allows us
to grow both ice structures competitively at the same time, with
the possibility of yielding mixed structures. It also enables a
clear distinction to be made between the two crystal patterns.
Furthermore, our study shows that biasing the nucleation
process is more efficient when done with respect to an effective
cluster size rather than an absolute cluster size comprising a
discrete number of molecules identified as belonging to the
same cluster. That is, we assign a quality weight to each
molecule within apparently ice-like neighbourhood so as to
damp out the contribution of molecules that are connected
but aligned poorly. This results in the biasing procedure
becoming notably more sensitive to gradual improvements in
the sought molecular order within the nucleus. In section 4, we
present preliminary results from our Monte Carlo simulations
of homogeneous ice nucleation, where both ice structures, Ih

and Ic, emerge in the course of nucleation and crystal growth.

2. Spherical harmonics analysis revisited:
issues with ice

We begin with the terminology widely used in application
of spherical harmonics to crystal structure recognition during
simulations of liquid–solid transitions. The first coordination
shell of a particle is defined as its vicinity within a sphere
of radius Rmin, corresponding to the first minimum in the
pair radial distribution function (≈3.45 Å for water/ice). All
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particles ( j) within the first coordination shell of a given
particle (i) are called neighbours, ri j < Rmin, whereas
the corresponding radii-vectors ri j are called bonds. The
latter should be distinguished from (solid-like) connections
which are subject to additional criteria imposed on the bond
correlations of two neighbouring particles.

Spherical harmonics analysis is based on a angular
analogue of the Fourier series used for approximating an
arbitrary function of one variable. That is, in principle, any
(angular) function defined on a unit sphere can be expanded
in a series of orthogonal complex functions, Ylm(θ, φ), the so-
called spherical harmonics, where θ and φ are the azimuthal
and polar angles in spherical coordinates, l is a positive integer,
and integer m ∈ [−l, l]. Evidently, r = 1 on the unit sphere,
and in general the radial dependence can be introduced by
multiplying the series by a radial function.

2.1. The standard approach to recognition and biasing of the
crystal growth

The method of spherical harmonics for capturing and analysing
cluster structures in condensed matter was first proposed by
Steinhardt et al [34] and has been utilized effectively in a
number of nucleation and crystallization studies [18–23]. The
essential idea is to estimate the (probability) density of so-
called bond orientations, ρ(θ, φ), between a probe particle and
its nearest neighbours by expansion in spherical harmonics:

ρ(θ, φ) =
∞∑

l=0

l∑

m=−l

q̄lmY ∗
lm , (1)

where q̄lm denotes the overlap between ρ(θ, φ) and Ylm . In
a fully disordered, isotropic substance, such as gas or liquid,
ρ(θ, φ) is symmetric and uniform, which implies that the only
non-vanishing contribution in (1) is due to l = 0. However,
when crystallization occurs, a well-pronounced orientational
order emerges at the crystal nucleation centres. In such
circumstances some of the coefficients q̄lm with l �= 0 become
non-zero, and by using those it is possible to measure the
average, or global, orientational order in the system. Note
that, in practice, the expansion has to be cut at some finite
value of l, and the more terms included in (1) the better the
approximation of ρ(θ, φ) obtained.

From the perspective of cluster analysis in simulations,
it is actually more useful to introduce an instantaneous local
counterpart of q̄lm . That is, bond orientation order around
particle i can be quantified by a set of complex numbers,

q(i)lm = 1

N (i)
b

N (i)
b∑

j

Ylm(θ(ri j ), φ(ri j )), (2)

where the azimuthal and polar angles, θ and φ, determine the
orientation of the bond, ri j , between particles i and j , and
N (i)

b is the number of bonds for particle i . Clearly, q (i)lm is not
invariant with respect to rotation of the coordinate frame. For
a particular value of l, though, these (2l + 1) numbers can be

viewed as components of a complex vector, ql , the norm of
which being, of course, invariant:

q(i)l =
(

4π

2l + 1

l∑

m=−l

q(i)lm q∗(i)
lm

) 1
2

. (3)

In a dilute phase where particle movements are correlated
weakly, the bond orientations around different particles are
distributed randomly, and thus, the distribution of norms, (3),
is such that their maxima are close to zero. As the
particle correlations become stronger, e.g. in liquids close to
freezing and especially upon supercooling, certain local order
gradually arises, thereby breaking the local symmetry of bond
orientations and shifting the corresponding ql distributions
away from zero. Yet, the vectors ql for different particles
remain mostly uncorrelated owing to the overall isotropy in
liquids. This is in contrast to well-ordered crystal structures,
where bond orientations are strongly correlated which, in
its turn, implies collinearity of ql vectors with the same
l-value. Also, for a perfect crystal, the magnitude of vectors
characteristic of the crystal structure is at maximum.

In a crystal at non-zero temperature the structural order
is of course to some degree diffuse, and ql vectors of
different particles are never completely collinear. However, the
correlation between two vectors, for particles i and j , can serve
as a convenient measure of the similarity between the nearby
surroundings of the two particles,

q(i j)
l,corr ≡ q(i)l q∗( j)

l

q(i)l q( j)
l

(→ 1 in perfect alignment). (4)

Indeed, the criterium of q (i j)
l,corr > τcorr is often employed

to identify solid-like connections between neighbouring
particles [20, 21], τcorr being the correlation threshold value.
Note that (i) q (i j)

l,corr is also invariant under coordinate rotation,

and (ii) even when the norms, q (i)l , for a given l are small
(i.e. Ylm is not characteristic of the structure) the correlation
criterium is still valid, although it may be insufficient and, for
that reason, inefficient.

By taking the average in (2) over the entire system we
arrive at the definition of the corresponding measures of global
order,

Qlm = 1

N

N∑

i

N (i)
b q(i)lm (5)

which coincide with the coefficients in (1) in the limit of
N → ∞. The global invariants are then determined as,

Ql =
(

4π

2l + 1

l∑

m=−l

Qlm Q∗
lm

) 1
2

. (6)

Note that in (5) the radius-vector of each bond, ri j , is accounted
for twice (once for atom i and secondly for atom j), but
with opposite signs. This double-counting makes zero all
Qlm vectors with odd l-values, because the corresponding
harmonics are antisymmetric.

The definitions (1)–(6) serve to provide the required
theoretical basis and a direct prescription as to how to monitor
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Figure 1. The probability distributions of q4 and q6 obtained with TIP4P water model for ice Ih and water. (A) Stable phases at T = 150 and
300 K, respectively; (B) supercooled water and stable ice at 200 K < Tmelt = 230 K.

the orientation order, both on the local and global scales. In
practical simulations, however, including harmonics of several
orders at once is computationally too expensive. Thus, it
is important to make a reasonable selection of l so that
only the relevant harmonics are accounted for. Therefore it
has become a common practice to include into the analysis
only the harmonics with l = 4 and 6 which seem to have
reasonably diverse shapes and indeed have proven to capture
well simple cubic (scc), face-centred (fcc), body-centred (bcc)
and hexagonal (hcc) crystal structures found in dense systems
of spherical particles [20–23]. In particular, harmonics with
l = 6 appear to be less sensitive to the differences between
various phases, which is the reason for q6m and Q6 being
usually used as common, correspondingly local and global,
order parameters. Then q4m and Q4 are used only for a
more detailed analysis, such as discrimination between crystal
phases.

Clearly, the local and global parameters are not equivalent.
The former, by definition, measures orientational order
around a particular particle/molecule and, hence, provides
a convenient means for tracking the process of nucleation
locally. Equation (4) is then employed as a criterium for
establishing solid-like connections between particles [20, 21].
All neighbouring particles having more than a certain number
of connections, Ncn > Nτ , are included into a solid-like
cluster, i.e. a crystal nucleus. In contrast, global parameters
measure only average orientational order while ignoring all
the details of local clustering. For instance, in LJ-type
systems nucleation proceeds stepwise—first, small bcc nuclei
are formed, and then within a sufficiently large bcc nucleus an
fcc core emerges; eventually the fcc structure, being the actual
stable phase, spreads over the entire volume [20–23]. By using
locally defined parameters it is possible to find all separate
nuclei and identify all phase patterns, whereby gaining quite
detailed structural information. One can, of course, use the
parameters of both types in the same simulation [19, 20].

An important property of a good orientational order
parameter is that it should map onto the required physical
structure without being too degenerate. However, in general,
we aspire to have an order parameter that yields a solid
(in contrast to the liquid) state without preference for any
particular crystalline structure that may emerge. In view of
this conflict the specification for the order parameter is not

always obvious a priori. The latter issue becomes especially
pronounced in molecular fluids such as water. For instance,
considering low symmetry and, hence, high anisotropy of
molecular crystals, the rotational invariance of an order
parameter may be associated with undesirable degeneracy
with respect to orientation of small crystal-like molecular
arrangements. In practice, applying a rotationally degenerate
bias can lead to fixating of incoherently grown, albeit locally
correct, patterns so that the formation of the long-range crystal
lattice would be unwittingly hindered. As we discussed in
section 1.2, and will see below, this appears to be part of the
issue in application of the spherical harmonics to directing the
growth of normal (Ih and Ic) ice structures in water.

It is important to realize, though, that rotational invariance
is not a necessary requirement for an order parameter to be
robust and applicable for biasing the nucleation process (as
contrasted to monitoring the crystal growth statistics where
a rotationally invariant measure is actually needed so as to
detect differently oriented nuclei). Indeed, as long as the
parent phase is isotropic (liquids are such), in a sufficiently
large volume nucleation centres of any possible orientation can
be found. Therefore, the imposed orientation of the crystal
nucleus to be grown can be chosen arbitrarily, e.g. solely for the
convenience of simulation, without any effect on the estimated
barrier shape.

2.2. Inconsistency between the normal ice structures and
spherical harmonics

One striking example illustrating a failure with the harmonics
Y4m and Y6m has been reported in the case of water–ice
transformation [18]. The sole use of Q4 and/or Q6 was
insufficient to direct a simulation starting in supercooled water
towards the ice Ih crystal. A clue to this failure can be found in
figure 1 where the q4 and q6 distributions obtained with TIP4P
water model are shown for equilibrated water and ice Ih phases
(T = 300 and 150 K, respectively) as well as for metastable
supercooled water and stable ice at the same temperature,
T = 200 K < Tmelt = 230 K [1, 25]. We see that, even though
both q4 and q6 distributions exhibit marked difference in their
shape and maxima locations between the stable phases, the
differences virtually disappear when comparing supercooled
water and ice crystal simulated below Tmelt. Moreover, there is
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Figure 2. Illustration of the alternating mirror-image clusters
distinguished within a single crystal structure of ice Ih by using q6;
see (4) and the text for more details. H-atoms are skipped for clarity.
The mis-split basal sheets are depicted in different tones. The
horizontal OO-connections are missed by q6-products.

another fundamental issue. The cluster search procedure based
on finding correlations between q6-vectors, (4), when applied
to the perfect ice Ih structure, mistakes the entire single crystal
for alternating (unconnected) sheet-like clusters which are, in
fact, mirror images of each other, see figure 2. Apparently, this
mis-splitting is provoked by the conflicting symmetries of two
local molecular configurations present in ice Ih, only one of
which being consistent with the symmetry properties of Y6m.
That is, in contrast to ice Ic where each water molecule has
all its four H-bonds involved in a staggered structure, one of
the H-bonds per molecule in ice Ih participates in an eclipsed
arrangement, whereas the other three H-bonds are found in
the same staggered configuration as in ice Ic, see figure 3(A).
Interestingly, in a perfect Ih crystal all the H-bonds in the
eclipsed formation are aligned perpendicular to the basal plane
(along c-axis of the crystal, z-axis in figure 3), and these are
just the OO-connections missing in figure 2 where only O-
atoms within the same vertical sheet have been identified as
interconnected (depicted in the same colour).

Let us look closely at the issue and the challenge that
it creates. The H-bonding or the equivalent OO-connections
give rise to two distinct supramolecular arrangements,
namely the so-called ‘chair’ (staggered) and ‘boat’ (eclipsed)
configuration which combine to give the hexamer rings, see
figure 3(A). It is easy to see that all such OO-configurations
that are not aligned with the c-axis of the crystal (z-axis
in figure 3) are of the chair form, whilst those that are
aligned with the c-axis can adopt either chair- or boat-like
configuration, thereby defining the type of ice structure, Ic or
Ih, accordingly. It is also clear that the two ice phases can have
a coherent interface and, in principle, mixed phases can occur
by alternating the configuration adopted in the basal-plane
sheets along the z-axis in figure 3. The two supramolecular
arrangements, chair and boat forms, have different symmetry
properties—the former being antisymmetric whereas the latter
having even symmetry with respect to the positions of the two
O-atoms making up a connection (upon superposing these O-
atoms). Note that in either case the H-bond tetrahedral patterns
around the two neighbouring O-atoms cannot be translated

Figure 3. (A) The two configurations of eight water molecules found
in normal ice structures, Ih and Ic, and mixtures thereof. The angular
diffuseness of OO-connections (H-bonds) around the links in the
ideal ice lattice(s) is depicted in a fashion conventional for spherical
harmonics—by asymmetric dumbbells, or lobes. (B) A sketch of
mixed ice structure. Cubic phase contains staggered, or ‘chair’ (c),
configurations only, whereas eclipsed, or ‘boat’ (b), configurations
are found in hexagonal phase, in 1:3 proportion to ‘chair’-forms.

so as to coincide, i.e. one of the tetrahedra has to be re-
oriented to enable coincidence. Therefore, instead of looking
for similarities in the neighbourhood of two molecules (which
is sufficient for spherical particles), the search for ice-like
orientational order in water should be based on a more specific
criteria, marking as ‘ice-like’ only the two relevant molecular
arrangements while disregarding all other possible patterns.

To exemplify, we can try to fit the two ice-genic
configurations with Y32—the only harmonic possessing
tetrahedral symmetry and, thus, being most relevant for ices.
The result of such an attempt is shown in figure 4. Re(Y32)

set represents two embedded tetrahedra inverse with respect to
each other and taken with opposite signs, i.e. antisymmetric.
All chair-form configurations present in ice can be mapped
onto these two tetrahedra, as long as one of the lobes in
Re(Y32) is aligned with the crystal c-axis. Note how, due
to antisymmetry, the corresponding q32-product should be
taken with a minus sign in order to produce a positive
correlation measure between the inverse tetrahedra making
up a chair-form configuration, see figure 4(A). Clearly, in
order to construct (or distinguish) a boat-form configuration,
one of the off-axis triplets in Re(Y32) has to be rotated 60◦
about the crystal c-axis, as illustrated in figure 4(B). One
might think that collecting overlaps with these harmonics—
Re(Y32) and its rotated version Re(Y32)

rot—in a single q-vector
could resolve the issue. An additional complication arises,
though, because in ice for any pair of neighbouring water
molecules (O-atoms), the two arrangement types are mutually
exclusive, i.e. only one of them—either chair or boat form—
can be assigned to a particular OO-connection. In contrast,
in supercooled water H-bonding patterns often produce diffuse
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Figure 4. (A) Construction of q32-product for two water molecules
sharing an OO-connection (H-bond) in ice, which illustrates the
antisymmetric correlation between the two tetrahedra forming the
chair-like (staggered) configuration. The underlying spherical
harmonics, Re(Y32), is shown below the sketch. (B) Illustration of
60◦ rotation adjustment necessary for one of the tetrahedra within
Re(Y32) ((red) dumbbell triplet) in order to obtain the correct
correlation product for the boat-form (eclipsed) configuration. The
incompatibility of the chair and boat arrangements is highlighted by
questioning the necessity of sign (shading) switch upon rotation of
Re(Y32).

configurations that can partly meet both the boat and chair
criteria simultaneously. For this reason the two forms (A
and B in figure 4) must be counted with opposite signs so
as to damp out any mixed arrangements—the condition that
overrides the inherent antisymmetry of Y32. The implication
is that one cannot combine Re(Y32) with its rotated version
and have a unified criterium for the correlation products
describing mutually exclusive events. Indeed, irrespective of
the harmonics used, as long as symmetric and antisymmetric
molecular arrangements are allowed within the same structure,
it seems impossible to unambiguously distinguish both types
by imposing a single condition on the dot-product between q-
vectors.

Our pictorial analysis shows why the property of rotational
invariance is irrelevant in this case, whereby such global
parameters as Q4 and Q6 or a simple tetrahedral correlation
measure [18, 19, 35], are rotationally too degenerate for
effectively biasing the growth of ice(s) I. It comes as no
surprise that collinearity of ql-vectors, (4), cannot fully
describe structural connectivity between water molecules
within the ambient ice forms.

3. Maximum projection method

Given that a simple cluster analysis based on the use of
spherical harmonics is not deemed adequate to direct ice
formation, we now introduce an alternative procedure, which
does not suffer from the aforementioned shortcomings and
is sufficiently flexible to be adapted for other analogous
problems.

We need a measure of orientation correlations with respect
to a particular set of directions. As with spherical harmonics,
certain spots on a unit sphere should be highlighted whereas
the contribution of intermediate regions should vanish. Such
a measure can be based on angular correlations between a
vector in question, i.e. a given bond, and a set of predefined
vectors of interest, or directors. In the most straightforward
implementation one could merely collect a normalized sum
of directing cosines as it has been done earlier in the case of
nitromethane [42]. Below we generalize the latter approach
so as to be able to include a few—in our case two—mutually
exclusive director configurations.

Let us consider a set of directors, {dk}, each starting at
the origin (on the O-atom of a water molecule in focus) and
pointing to one of the vertices of a tetrahedron. For certainty,
we assume one of the four directors being aligned with the z-
axis (x = 0, y = 0) and one of the remaining three placed
in the xz-plane (y = 0). In order to account for all distinct
orientations of the main tetrahedron we extend our director set
by including vectors with all possible sign variations:

d1 = (0, 0, ±1),
d2 = (± sin γ, 0, ± cos γ ),
d3 = (± sin γ cos π3 , ± sinγ sin π

3 , ± cos γ ),
(7)

where γ is the tetrahedral angle cos γ = − 1
3 . Thus, the

total set consists of 14 directors being counterparts of the
lobes of Re(Y32) and its rotated version shown in figure 4.
However not all of the included tetrahedral sets can be paired in
accordance with the two ice-genic configurations. Appropriate
pairing of the tetrahedra for two neighbouring water molecules
is introduced by using the following projection summation
procedure.

For a given (arbitrary) unit vector, u, one can always find
the director of maximum correlation, i.e. the one corresponding
to max{udk} = cosψ {k}

min(u), where ψ {k}
min(u) is the actual

projection angle (which is minimum, of course). Then, in
a fashion similar to the spherical harmonics analysis, for
a number of normalized vectors, {ui j}, representing bonds
around the molecule in focus (i th) one can in general define
a local orientation measure specific for the given director set,

q(i)dir = 1

N (i)
b

N (i)
b∑

j

(±)[max
k
(ui j dk)]n. (8)

Here we introduced the (yet undefined) signs within the sum
in order to impose selective correlation rules for damping
out, where appropriate, the contributions inconsistent with the
dominant geometry of connections, figure 5(A). That is, the
definition of the projection signs and the way the summation
is performed in practice should be problem-specific and can be
far from trivial, like in the case of ice crystals.

Unlike spherical harmonics which include several powers
of both cosines and sines, vector correlations with directors
are determined by projecting cosines only. This means that
deviations from the selected set of orientations fade out rather
slowly. In order to improve on the sensitivity of the projection
procedure, in (8) we suggest collecting the maximum cosines

7
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Figure 5. (A) Illustration of projecting onto a set of six directors within the xy-plane. The two incompatible director triplets are shown in
different tones, the area of maximum correlation with each director being shaded accordingly. The xy-projection of four sample bonds around
the central O-atom is given, where the dashed bond is to be damped out as inconsistent with the dominant pattern. (B) Function,
cos32(φ + kπ/3), k = 0, 1, 2, illustrates how the projections onto a set of directors in the xy-plane fade out in mid regions.

in some power, n > 1, where n is an adjustable parameter
providing control over the desired strength of correlations. In
the current case it is natural to require for projections to vanish
in the mid region between the nearest-neighbour directors,
i.e. about 30◦ away from each director. The latter condition is
satisfied if one takes projecting cosines to the power of n = 32,
see figure 5(B).

Let us now clarify how the summation in (8) can be done
in practice so that the boat/chair confusion is avoided. The
fact that all boat forms in ice Ih are aligned along the same
axis (c-axis) gives us a nudge as to how to get around the
issue. One way of dealing with it is to split the sum in (8)
into two sums: one, q (i)z , for the projections of bonds that
are roughly aligned with the z-axis and which are allowed to
adopt either a boat- or a chair-like configuration (the directors
with zk = ±1), and the second sum, q (i)xy , for all the other
projections that correspond to either of the two incompatible
triplets of directors with zk = ±1/3, taken with opposite signs.
From here on we call these directors the xy-triplets. At this
stage the sign of each contribution to either of the sums is
set according to the normal antisymmetry rules, for xy-triplets
antisymmetry being imposed within the projection onto xy-
plane, as shown in figure 5(A). As soon as the counting is
done for all neighbours of the central molecule, the modulus
of the average correlation with the xy-triplets, |q (i)xy |, should
be multiplied by the average z-sign of the corresponding OO-
bonds and added with negative sign to the z-sum, q (i)z . This
way the information about the dominant xy-triplet and the
damped out bonds (inconsistent with each other) is preserved
in the modulus of q (i)xy , whereas the correct z-antisymmetry
is imposed by averaging over z-signs. Thus, we arrive at the
following expression for the bond orientation parameter suited
for both ice structures, Ih and Ic,

q(i)ice = q(i)z − 〈sign(z)〉(i)xy |q(i)xy |, (9)

where the two sums read

q(i)z = 1

N (i)
z

∑

j

Pr
max

{dz=±1}(ui j), (10)

q(i)xy = 1

N (i)
xy

∑

j

signxy(dz=± 1
3
) Pr

max
{dz=± 1

3
}(ui j), (11)

here the maximum projection of ui j onto the corresponding
director set is

Pr
max

{d(···)}(ui j )

=
∑

k(···)

{
(ui j dk)

n if ui j is max. corr. with dk ,

0 otherwise,

while the antisymmetry of xy-triplets is defined by

signxy(dz=± 1
3
)

=
{

sign(xi j) if max. corr. with dy=0,z=± 1
3
,

−sign(xi j) if max. corr. with dy �=0,z=± 1
3
,

and the average z-sign of ui j vectors projected onto the xy-
triplets is

〈sign(z)〉(i)xy = 1

N (i)
xy

×
∑

j

∑

k

{
sign(zi j) if max. corr. with dz=± 1

3
,

0 otherwise,
(12)

N (i)
z and N (i)

xy being the accumulated numbers of projections
onto the corresponding director sets.

Since the above formulae are rather involved to grasp
at first glance, below we present the algorithmic equivalent
thereof, which should be easier to follow. We notice that
there are only three basis vectors which, when subjected to
appropriate symmetry operations, are sufficient for producing
the 14 directors that span over the vertices of all the tetrahedral
configurations of interest. In terms of Euclidean coordinates
all these symmetry operations can be traced to mere sign
alternations in (7). Therefore, for a given (pre-normalized)
vector between two O-atoms, ui j = (xi j , yi j , zi j), it appears
convenient to skip, at first, the signs of all its coordinates
and find out only the maximum correlation with one of the
three basis directors, {d(0)k , k = 1, 2, 3}, (7) wherein all the
coordinates are taken positive. This is done by finding k that
gives dcorr(ui j ) ≡ max{|xi jd

(0)
k,x | + |yi jd

(0)
k,y | + |zi j d

(0)
k,z |}. The

8
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Figure 6. (A) Probability distributions of the product, −q(i)ice q( j)
ice , in supercooled bulk water ((red) dot–dashed line), in a water system

containing an ice Ih nucleus ((green) dashed) and in the Ih crystal ((blue) solid), all at 220K. (B) Illustration of an ice-like cluster (with
O-atoms depicted as balls) found in supercooled bulk water by connecting all O-atoms for which −q(i)ice q( j)

ice > 0.5 (the system containing
768 TIP4P molecules).

Figure 7. (A) Probability distributions for the number of ice-like connections in supercooled water (red line) and ice (black) at 220K. The
colour code for molecules with different degree of connectivity is also shown: the upper row of circles is for O-atoms in the largest cluster
(green tones and blue) and its interfacial particles (magenta), the lower row of circles for the rest of the system (red, yellow and orange).
(B) A cut from a simulation snapshot illustrating a small ice-like cluster supported by insufficiently correlated water molecules.

latter quantity is, then, included into the corresponding sum
in (9) but with an appropriate sign that identifies the actual
director (rather than the basis director).

Thus, the scheme is: (i) for each bond identify the basis
director (k = 1, 2 or 3) that gives the maximum projection,
dcorr(ui j); (ii) include this contribution into (9) with the aid of
the following rules:

if k = 1, then sign(zi j)dn
corr(ui j) is added into q (i)z , (10);

if k = 2, then sign(xi j)dn
corr(ui j ) is added into q (i)xy , (11);

if k = 3, then −sign(xi j)dn
corr(ui j) is added into q (i)xy , (11).

(iii) In the latter two cases also add sign(zi j) to the sum in (12).
Upon counting all the neighbours, the averages are collected
in (9). The condition for the shells of two water molecules
being correlated to produce an ice-genic connection is then
very simple:

−q(i)iceq( j)
ice > τcorr. (13)

The effectiveness of the approach is illustrated in figure 6
which shows the probability distributions of the product,
−q(i)iceq( j)

ice , for supercooled bulk water, a large ice Ih cluster
in supercooled water and the totally crystallized system,
all at the same temperature T = 220 K. In the first

case the distribution has its primary maximum around zero,
corresponding to prevailing unstructured water, while the
presence of the dissolved ice-like structure is revealed by the
secondary maximum where −q (i)iceq( j)

ice > 0.5. According to
our preference, the distribution for the ice crystal is almost
completely squeezed into the region above 0.5, having only
minor features at lower values which may be attributed to the
diffuseness of the structure at T = 220 K. Also, in figure 7 the
distributions for the number of solid-like connections per water
molecule (O-atom), Ncn, are given for both the supercooled
bulk water and equilibrated ice Ih systems. The downwards
arrow points to the threshold value above which, Ncn >

Nτ = 1, a molecule is included into a solid-like cluster.
Due to the fact that −q (i)iceq( j)

ice separates well icy structures
from disordered water and, thus, Ncn is also a very sensitive
measure of ice-genic networking, molecules having only two
ice-like connections can be definitely considered as clustering.
This is particularly important because, apart from possible
small threads, a separate hexagonal ring contains only such
minimally interconnected molecules. The molecules with only
one connection, if not making up a simple dimer, are linked
to some cluster and represent the interface layer supporting the
cluster within undercorrelated water environment.

9



J. Phys.: Condens. Matter 20 (2008) 494243 A V Brukhno et al

Here it is worth noting that the introduced order parameter,
q(i)ice , is not rotationally invariant. That is, it is specifically
designed and suited only for the two ambient ice forms, Ih

and Ic, where molecular configurations of the boat and chair
type can alter only along a predefined axis, corresponding to
the c-axis of either of the two ice lattices. By definition, the
presented summation procedure, (9)–(12), is not supposed to
effectively distinguish the structures of ice phases where the
axis of the boat–chair dualism is not fixed (e.g. ice II) or
other additional complications arise (e.g. due to the presence
of pentagonal five-membered rings in ice III). It should not be
difficult to adapt the procedure to those cases too. For example,
one can gain the invariance with respect to the orientation of
the duality axis by (re-)aligning the local z-axis with the OO-
connection in focus, see figures 3(A) and 4—in this case no
angular diffuseness around the z-axis should be assumed. We
note, however, that for the purposes of the present study we
do not need to make our orientational order parameter more
flexible than it is, because, according to the TIP4P model phase
diagram [1], it is rather unplausible to expect any other ice
phase to interfere with the Ih and Ic forms at ambient pressure.

We now address how one discriminates between
molecules belonging to a particular ice phase. As is seen in
figure 4, the distinction can be based on the (anti)symmetry
relations between the two tetrahedra forming a connection.
That is, the two xy-triplets participating in the formation
should obey the following rules: (i) they should be either
symmetric (boat form) or antisymmetric (chair form) with
respect to each other, and (ii) their average z-projections should
have opposite signs. These criteria can be used in order to
count the number of boat- and chair-like connections each
molecule makes with its neighbours. Provided the primary
condition for an ice-like connection, (13), is fullfilled, i.e. a
given pair of molecules, i and j , is certainly involved in one of
the two sought arrangements, we can decide on the connection
type by using solely the first criterion for the xy-triplets,

q(i)xy q( j)
xy

{
> 0 symmetric, boat form,

< 0 antisymmetric, chair form.
(14)

Now, knowing the number of boat and chair forms around
each molecule, we have the means to identify its phase. Since
boat configurations are completely absent in cubic ice and
constitute only a quarter of connections in hexagonal ice, it
is tempting to label all molecules that are found in at least one
boat-like arrangement as Ih phase, and Ic otherwise. It is clear,
though, that initially loose (liquid-like) molecules are likely to
pass through intermediate unresolved states, and the type of
each connection may change a few times before a molecule
settles down within a larger crystal structure. So it appears
meaningless trying to label a water molecule unless it has
at least three sound ice-like connections with its neighbours.
We chose to apply an even stricter rule: only the molecules
with all four connections (and hence H-bonds) established are
classified. In all our simulation snapshots molecules in the Ic

environment are depicted in blue, and those in Ih structure are
dark-green, see figure 7 for the full colour code with respect to
the number of ice-genic connections.

To summarize, the advantages of the maximum projection
method are: (i) it is relatively simple and straightforward to
code; (ii) it is rather general and can be adapted to other
orientation analysis problems (one has to merely redefine the
directors and the sign rules in (8)); (iii) it is particularly
suited for low-symmetry cases where the spherical harmonics
analysis may require inclusion of high order harmonics or may
fail completely; (iv) the director scheme is easily understood in
terms of ordinary 3D vectors.

4. Monte Carlo simulation: competitive growth of
ices Ih and Ic

4.1. Choosing the coordinate for bias

By using the orientational order parameters introduced above,
it is possible to find all clusters in the simulated system in the
same manner as it is done for spherical particles. A general
approach to simulating nucleation is to direct (bias) growth
of the largest cluster, as opposed to global crystallization
where biasing is applied to the entire system. That is,
by focusing the bias on the largest available nucleus and
ignoring all the smaller ones (allowing those to dissolve),
we, presumably, reduce the probability for two nuclei to
grow near each other and, therefore, we can hope that
any interaction between them does not affect the resulting
free energy barrier [20, 21]. In the case of ice it proved,
however, inefficient to use the number of molecules in the
largest cluster, Nnuc, as the coordinate for biasing. This can
be understood with the aid of figure 6, from which it is
clear that transforming a molecule between liquid-like and
crystal-like states is associated with gradually increasing the
corresponding −q (i)iceq( j)

ice products. This process appears to be
much slower and more tricky in water environment than in
simple fluids, amounting essentially to stepwise accumulation
of ‘good enough’ ice-like connections. As a side issue, there
is always a broad distribution of the ice-likeness within a
cluster, which means that two clusters with the same number of
water molecules can differ considerably in the quality of their
structures. Obviously, this leads to ambiguities and inevitable
hysteresis in both the biasing procedure and the estimated free
energy. It is to say that, unfortunately, increasing the threshold
in (13) does not help much because this way one only makes it
harder for a molecule to be included into a cluster, whereas the
aim is to smoothly grow the latter. In order to minimize such
effects, we introduce a quality criterion and replace Nnuc with
an effective nucleus size, N (nuc)

eff , defined by

q(nuc)
eff ≡ N (nuc)

eff

N
≡ 1

N

Nnuc∑

i

1

N (i)
b

N (i)
b∑

j

(−q(i)iceq( j)
ice ), (15)

where we have also introduced the reduced effective size of
the nucleus, q (nuc)

eff ; as above, N (i)
b is the number of bonds (not

connections!) for molecule i within the nucleus. One can
notice that, when applied to the entire system, q (nuc)

eff turns into
a global order parameter spanning values between −1 and 1.
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4.2. Simulation details

All simulations presented below were carried out in an N pT
ensemble with p = 0.1 MPa, and the TIP4P water model with
Ewald summation for electrostatic interactions was employed,
which is not only the most popular water model but also
seems to reproduce well the shape of the experimental phase
diagram of water (up to some scaling) [1]. As in similar
studies reported earlier by other groups [18, 19], the geometry
of the periodic simulation box was chosen commensurate with
the sought ice crystal(s). Isotropic volume changes, retaining
ratios between the box dimensions, were attempted randomly
in ln(V ) at a rate of 1/N , i.e. one volume step per MC sweep
(on average). While in a sufficiently large system the barrier to
homogeneous nucleation should not be affected by the shape
of the simulation box, at the current stage the problem of ice
crystallization/nucleation remains extremely computationally
demanding, which puts severe restrictions on the system size
that can be simulated. Thus, maintaining the system in a
shape matching the prospective ice lattice(s) is intended for
minimizing any unphysical boundary effects which might arise
when simulating a system restricted in size. No doubt, one
has to be careful in interpretation of the data obtained in such
circumstances and, therefore, in this report we do not expect to
attain the actual nucleation barrier. Our primary goal here is
rather to establish an efficient and reliable simulation method
for directing homogeneous ice nucleation in the least biased
manner.

Up to now systems consisting of N = 96, 360 and
768 water molecules with periodic box dimensions matching
the (stable) ice Ih structure have been simulated below the
temperature of melting, Tmelt = 230 K [1, 25]. In
some cases, especially with the largest system size, for
the sake of considerable increase in simulation speed (up
to 5–6 times) we skipped the reciprocal part in the Ewald
sum. Nowadays it has been established that in dense ionic
mixtures—water being a typical example—due to dramatic
screening of electrostatics, local charge distributions can be
well approximated by renormalized (reduced) charges so
that partially charged molecules in solution can be seen as
essentially neutral objects when examined from sufficiently
long distances [43]. Particularly, in the case of water the long-
range electrostatic term contributes only a tiny percentage into
the total energy of a molecule and skipping it does not affect
the TIP4P model properties notably4.

In order to obtain the Gibbs free energy barrier(s) with
respect to N (nuc)

eff , or equivalently q (nuc)
eff , MC simulations

of umbrella sampling type were performed in a few sets
of parallel runs, each covering a restricted sub-range of
q(nuc)

eff . Each parallel simulation was carried out in several
overlapping windows (smaller sub-ranges), with a unified

4 We expended some effort to study the effects of skipping the reciprocal
Ewald sum on the energy, structural and thermodynamic properties of the
system. We found that by carefully selecting the real space cut-off (Rcut =
8.5 Å) and the screening parameter (α = 0.3) it was possible to keep the
energy error below 0.5%, whilst no deviation in the RDFs was observed as
compared to the case with full Ewald sum. Independent MD simulations of
close to coexistence water and ice Ih phases did not reveal any drift in Tmelt

either.

harmonic bias potential being applied with respect to q (nuc)
eff .

A replica-exchange (RE-MC) technique was used to allow for
movements between adjacent windows [20, 21]. By a unified
bias potential we mean that it is a single parabola over the entire
range of q (nuc)

eff , which is in contrast to several parabolic wells
of different width, each centred in the mid-point of its own
window, being most often used in simulations of this kind. The
advantages and essential details of using a unified umbrella
potential are discussed in the following section.

4.3. Replica-exchange umbrella sampling with unified
bias potential

In general, the purpose of using a bias potential is to effectively
compensate for the underlying free energy (sometimes
entropy) landscape so that the system could explore more
freely the configuration space and, thereby, overcome barriers
and reach otherwise rarely visited (sub-)states. As such, the
sought bias, or penalty function, has always been a sort of
the Holy Grail in the domain of self-adjusting free energy
methods [28–32]. In contrast, with umbrella sampling [26, 27]
it became a rule of thumb not to seek the elusive ideal
but routinely apply strong enough parabolic umbrellas in
sufficiently narrow windows [20–22], which works robustly,
although it is not the optimum approach on the slope of a steep
barrier. That is, in the latter case only half of the parabola
actually drives the system onto the barrier whilst the other
half in effect makes the sensed slope even steeper! Clearly,
as the barrier slope steepens one has to progressively squeeze
the windows and ensure that they overlap, or at any rate touch,
by the favourable parts of the corresponding umbrellas. This
would not be the case if one knew (or could guess) at least
the direction of the free energy rise, because then one could
put the centre of each harmonic well not in the window mid-
point but at one of the edges (or even further out) where the
free energy is assumed to be higher. This way the bias would
be favourable in a whole window. A natural extension of this
‘stitched umbrellas’ approach is to use a single harmonic well
over the range where the free energy is thought to be increasing
monotonously and steeply. Again, ideally the centre of the well
is to be placed as close to the actual barrier top as possible.
In our case, since the system sizes are (most likely) too small
for actually observing the critical nucleus, we put the umbrella
centre close to q (nuc)

eff = 0.5, unless otherwise specified.
A nice ‘drawback’ of using a unified umbrella in

conjunction with replica-exchange is that there is no change
in the model Hamiltonian associated with an exchange of
configurations between overlapping windows. This is because
no hopping between (different) parabolas actually occurs. The
exchanged replicas merely swap their q (nuc)

eff -ranges, or window
identities. Of course, for such a swap move to be possible a pair
of configurations must be found within the overlapping region
of two adjacent windows.

Assuming that each window has been explored by the
system sufficiently well, i.e. every q (nuc)

eff -bin has been visited
at least a few times (say, Nvis > 10), the collected histogram
of visits, Nvis(q

(nuc)
eff ), allows for calculating the relative free

11



J. Phys.: Condens. Matter 20 (2008) 494243 A V Brukhno et al

Figure 8. (A) Sampling probability distributions for the system of 768 molecules during the process of a biased ice nucleation. Subtotal
distributions progressively collected at different stages are shown. The legend displays the number of MC steps per molecule. (B) The final
mixed ice structure.

energy within kth window as

βGk

(
q(nuc)

eff

)
= −βW (bias)

k

(
q(nuc)

eff

)
−ln

N (vis)
k (q(nuc)

eff )

N (tot)
k

+const,

(16)
where β = 1/(kT ), W (bias)

k (q(nuc)
eff ) is the applied bias potential

(in our case the same harmonic function), and N (tot)
k is the

total number of samples in the window. The differences
between unknown constants can always be eliminated from
the consideration by use of an appropriate stitching procedure
for the continuous pieces of the free energy function obtained
within adjacent windows. Indeed, one can notice that the
possible discontinuities in G(q (nuc)

eff ) can develop only at the
edges of windows, which are in our case separated by half-a-
window intervals in q (nuc)

eff . Thus, in order to (re-)construct the
continuous free energy profile in the entire parameter range,
one has to suitably shift the G(q (nuc)

eff ) sub-ranges.
Below we use index k not for windows but for half-a-

window intervals, whereas the order parameter dependence
is replaced by a discretized notation with a superscript index
for q(nuc)

eff -bins. Then, starting with k = 2 and subsequently
incrementing k, we chose to update all the free energy values
obtained within kth interval by adding

�G(edge)
k−1,k = 1

2

[(
G(m)

k−1 − G(m−1)
k−1

)
+

(
G(2)

k − G(1)
k

)]

−
(

G(1)
k − G(m)

k−1

)
, (17)

where m is the maximum bin index in each interval. Obviously,
this procedure corresponds to a (mean) linear extrapolation for
the free energy difference between the adjacent utmost bins
in kth and (k − 1)th intervals. Although more sophisticated
schemes can be applied [27], we found that (17) produces quite
a satisfactory continuous G(q (nuc)

eff )-profile, without detectable
abrupt inflections.

4.4. Biased ice crystal growth

Prior to free energy calculations, we had to obtain initial
configurations corresponding to the values of q (nuc)

eff falling
within each window so as to cover the entire range between
the states of liquid water and ice. This task by itself

appeared rather tedious in terms of the simulation effort. For
each system size we performed several simulations starting
with equilibrated supercooled water configurations and using
different random sequences. Not to overdamp the dynamics of
sampling, we chose for this stage a rather modest supercooling
regime, T = 220 K—just below Tmelt = 230 K. A very steep
biasing potential had to be applied in order to drive the system
over the crystallization barrier. In these simulations we put
the parabola centre at q (nuc)

eff = 0.8 whereas its height at the
liquid end reached hundreds kTs (1200 kT for N = 768).
While with 96 molecules about 105 MC sweeps (steps per
molecule) were necessary to attain total crystallization of the
system, the required simulation length increased progressively
with the system size: it tripled for 360 molecules, and over 106

steps per molecule were needed for ice structures to build up
with N = 768. The sluggish sampling of q (nuc)

eff during this
long-term process is illustrated for the latter system in figure 8.

In all cases we eventually obtained pure hexagonal ice and
mixed structures with alternating sheets of Ih and Ic ices in
different proportions, as is illustrated in figure 9 for the system
of 360 molecules. In neither case did the pure cubic ice arise.
This is not surprising with N = 96 and 768, owing to the
fact that in these systems the periodic box does not fit Ic lattice
along the z-axis. However, with N = 360 the box dimensions
actually match the continuous cubic ice lattice. Yet, it was not
obtained.

In figure 10 a few clusters found at initial stages of
nucleation with N = 768 are presented, see also figures 6(B)
and 7(B). First of all, we clearly see that the maximum
projection procedure presented in section 3 works well.
Second, the picture suggests that, despite the method of
biasing the largest cluster growth being used, already at
initial stages of crystallization many small ice-like arranged
threads and rings are found, which later merge into a few
separate but apparently correlated clusters. Evidently, these
long-range correlations must be imposed by H-bond networks
which, eventually, spread over the entire system and settle
down into the overall crystal structure. Note how strong
short-range correlations [44] produce a long-range network
of clusters which is gradually self-tuning into a large-scale
ice lattice. At some intermediate stage of this ‘tuning-up’
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Figure 9. Three ice structures obtained with 360 (TIP4P) water molecules at 220 K. (A) hexagonal Ih phase; (B) and (C) mixed phases with
different proportions of alternating hexagonal and cubic structures, Ih:Ic = 2:1 and 1:2, respectively. The colour code: green for Ih and blue
for Ic. The prism face is shown in the left column, and the basal face in the right.

process a well-structured crystal core emerges, similar to that
in figure 6(B). It is worth mentioning that when looking at
snapshots where all water molecules are present and only the
largest cluster is highlighted, it is easy to miss out the larger
surrounding network because smaller clusters are concealed by
undercorrelated water molecules.

These observations, whilst being generally in line with
the arguments given by Matsumoto et al [15], seem to be,
in some respect, at odds with the findings of Radhakrishnan
and Trout for biased crystallization of pure hexagonal ice
(JACS) [18] as well as the metadynamics results of Quigley
and Rodger for pure cubic ice [19]. In these studies
similar multidimensional global order sets (2D and 3D,
respectively, both included Q6 and some tetrahedral correlation
measure) were used for biasing and yielded different ice
forms. Furthermore, the authors of both papers concluded that

they observed crystallization proceeding with a compact well-
shaped nucleus. However, in the first case, [18] where a system
of about a thousand molecules was treated, it is difficult to
judge the initial stages of nucleation, as no detailed analysis
of the nucleus size and geometry was presented5 and only
simulation snapshots of the entire system were given. By
inspecting the snapshots (figure 1 in their JACS paper) one
can see that about half way on the barrier slope (figure 2) the
system adopts configurations where some hexagonal patterns
can be detected by naked eye (figure 1b). These are visible
because a larger-scale arrangement—in the shape of an empty
tube—has, in fact, spread across the simulation box, as Quigley
and Rodger also noticed [19]. In the next snapshot (figure 1c),
corresponding to a small increment in Q6, the ice structure
5 In this study only the order parameter distributions for local ‘clusters’
consisting of nearest-neighbour molecules were given.
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Figure 10. Snapshot cuts of ice clusters found in the system of 768 (TIP4P) water molecules at different stages of nucleation. (A) small initial
structures; (B) tetrahedrally arranged threads and rings; (C) cluster network formation (the same configuration viewed at different angles and
scale). Insufficiently correlated water molecules have been removed for clarity.

has already blown and become well pronounced, and one can
anticipate its percolation through the volume in all directions,
similar to what is seen in the snapshot we present in figure 6(B).
A typical configuration shown by Radhakrishnan and Trout
for the top of the barrier (figure 1e) is even more structured
and spread—the periodic boundary effects must be in play
here. Thus, the overall crystallization process observed by
these authors is not, actually, at variance with the image of
long-range correlations spreading over the network of ice-
like structures, as is found by use of the cluster analysis in
all our systems irrespective of the obtained ice lattice. In
the work of Quigley and Rodger [19] the system size was
rather small (576 molecules), which makes it even more
difficult to draw a definite conclusion about the observed
freezing process. Their snapshots reveal, though, that in their
case too, after a long initiation period with small unshaped
clusters present, the ice structure eventually propagated in all

directions rather easily. Note that, despite very similar sets
of order parameters being used, in neither of the two studies
combined structures of ices Ih and Ic were obtained, whereas
we constantly observe mixing of the two ice forms in our
simulations. We therefore infer that the current mosaic picture
of ice nucleation extractable from the literature is far from
being complete or satisfactory. It is also clear that larger
systems need to be simulated in order to gain conclusive
data on the formation of the critical nucleus, its size and
shape.

4.5. Free energy calculations

Starting with the obtained initial configurations, we performed
equilibration runs with 105 MC steps per molecule in every
window. These were done in essentially the same fashion as the
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Figure 11. Gibbs free energy barriers to ice formation obtained for: (A) the system with N = 96 at T = 220 K (each line represents a
separate simulation of over 1 million MC sweeps); (B) the system with N = 768 at T = 200 and 180 K after 0.5 million MC sweeps
(dashed are the intermediate results, T = 200 K).

prospective free energy calculations, by use of parallel replica-
exchange MC simulations with a moderate harmonic biasing
potential centred at q (nuc)

eff = 0.5. The height of the potential
at q(nuc)

eff = 0 was 175 kTs for T = 200 K and 150 kTs
for T = 180 K. In all cases the discretization of the order
parameter was such that each window consisted of 16 bins.

The current free energy data have been acquired mostly for
N = 96 and the large system, N = 768, that crystallized into a
mixed ice structure shown in figure 8(B). The resulting Gibbs
free energy profiles, G(q (nuc)

eff ), are given in figure 11. Since
the free energy is evaluated only up to a constant, the relative
positioning of its profiles is essentially a matter of a reasonable
convention. Thus, the choice of zero levels in the two plots was
guided by different considerations, as explained below. Again,
judging by the common shape of all the lines we conclude that
biasing with respect to the effective cluster size does bring the
system over the nucleation barrier.

Strikingly, with the smallest system size we observe
dramatic variations in the barriers obtained in subsequent
simulations, each over a million steps per molecule (in each
window). This is in contrast to our naive expectation that
due to the imposed artificial periodicity the smaller system
should have behaved nicer, displaying more stable statistics
than the larger ones. Such a diverse spread in the barrier
shape and height might lead one into thinking that the final
ice structure must have changed its identity from run to run.
It was not the case, however, which is revealed by the well-
shaped minimum corresponding to ice, q (nuc)

eff > 0.5, where
only slight deviations of the G(q (nuc)

eff ) slope are seen. Indeed,
on this side of the barrier a well-developed ice structure is
constantly present and configurational fluctuations are strongly
damped in comparison to those observed at the other side. To
emphasize this observation, in figure 11(A) we put all the ice
phase minima at zero level so that the variations in G(q (nuc)

eff )

span over the region in q (nuc)
eff where they originate from.

For the larger system, N = 768, we do not have as much
statistics and the obtained free energy data do not cover the
entire q(nuc)

eff -range (which is not necessary for estimation of the
barrier). In figure 11(B) the G(q (nuc)

eff )-profiles are placed in a
more conventional way, i.e. their minima for the liquid (parent)
phase are fixed at zero. It is clear that in this case the estimated

barriers are unlikely to be settled after only half-a-million MC
sweeps. The difference between the dashed and solid lines,
which correspond to the partial data obtained at T = 200 K
after 0.25 and 0.5 million sweeps, shows an obvious trend of
reduction in the barrier height. This trend indicates that the
system may not have been equilibrated yet, which is then even
more true at T = 180 K. In the latter case some wavy kinks on
the barrier slope disclose the presence of long-lived structures
in supercooled water—a typical picture observed in partial data
for all system sizes.

Regarding the location of the barrier tops in figure 11(B),
which roughly correspond to half the system size, q (nuc)

eff ≈ 0.5
(the actual Nnuc/N being somewhat larger), we inevitably
conclude that the simulated system is way too small to
embrace the critical nucleus. This is in accord with the
afore-discussed cooperative tuning of small clusters which
progressively merge into/with larger ones—the process that in
a small system eventually results in a relatively fast spread of
ice-genic H-bonding on the global scale. Thus, as in the earlier
studies [18, 19], a (sudden) percolation of the coherent ice
structure through the periodic boundaries is normally seen in
configurations corresponding to the transition state. In the light
of this fact, we have to stress that all the fee energy data for ice
crystallization reported up to date were obtained for undersized
systems.

Even though it is evident that our free energy data are
insufficient to be conclusive, our rough estimate for the height
of the nucleation barrier for the largest simulated system,
falling within 120–150 kT, is way too large in comparison to
the barrier heights reported earlier for systems of comparable
sizes: 60 kT for hexagonal ice [18] and 70 kT for cubic ice [19].
While we cannot with certainty explain the discrepancy, we
realize that one cause may be the difference in the biasing
methods. In both the referred works similar sets of global
order parameters were employed with the implication that the
estimated crystallization barriers may be actually not related
to the true nucleation pathway. Apart from that, in those
simulations only pure ice phases, either hexagonal or cubic,
were emerging, whereas in our study we focused on growing
the largest cluster and (successfully) enabled both ice forms to
arise, without favouring a particular phase. The latter aspect
seems to be important because allowing the two ice structures
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to combine is likely to encourage a greater variety of ice-
like arrangements. Then, the initiated clustering process may
temporarily get stuck, thereby making the free energy barrier
higher. Moreover, the issue of incoherent growth of the two ice
forms should be especially pronounced in small systems, as
soon as the developing structure starts percolating through the
periodic boundaries—the effect that is certainly present with
the current system sizes, e.g. see figure 6(B). We note also that
in molecular dynamics simulations of the brute-force type [17]
the interface between two separate—and, thus, incoherent—
nuclei persists in excess of 0.5 μs. In contrast, if a single
ice form is favoured, it is plausible to expect its propagation
through the volume going easier, because in this case molecular
patterns at the opposite sides of the same cluster are most
likely to be matching and, thus, readily stitching due to the
box periodicity.

5. Concluding remarks

In summary, we have tackled the problem of ice formation
in pure bulk water for which no unified bond orientation
order parameter was available previously. As an alternative
to spherical harmonics analysis, we introduced a maximum
projection method and successfully applied it in the simulation
of competitive growth of hexagonal and cubic ice forms. The
suggested approach is sufficiently general and especially suited
for cases where supramolecular arrangements can comprise
patterns of different symmetries for which the conventional
search for site-to-site orientation similarities may be error-
prone.

Concerning our simulations of ice nucleation and
calculation of the associated free energy barriers, altogether
our observations are in accord with previous simulation studies
of the same phenomenon. In particular, we observe how
strong short-range correlations within relatively long-lived
hydrogen-bonded networks [44] give rise to severe viscosity
of supercooled water and depress the dynamics of sampling in
simulation. We believe that for the same reason non-distant
local crystallization centres in water appear to be correlated
and, as such, gradually merge into a large-scale unshaped ice-
genic network. Eventually, after H-bonds within this network
sufficiently self-tune, a well-shaped ice core arises, being
surrounded by a relatively structured and spread buffer zone
which makes further growth easier. This description in large
part follows the discussion of spontaneous ice Ih nucleation
of Matsumoto et al [15] and suggests that the process is
initiated by a collective fluctuation in H-bonding arrangement
within a relatively large volume. Unfortunately, such a highly
cooperative underlying mechanism results in a surprisingly
effective percolation of the developing ice patterns through
the simulation box, as is clearly seen in the transition state
configurations for all system sizes studied up to now both in
this report and by other groups [18, 19]. This is indicative of
unsolved challenges in simulation of ice nucleation. Thus, a
conclusive study of both the nucleation pathways and barriers
would require longer simulations (∼108 steps/mol.) for larger
systems (∼104 mol) than have been done currently.
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